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Abstract

It is shown that a generalized nonlinear Schrödinger equation proposed by
Malomed and Stenflo admits, for a specific range of parameters, resonant
soliton interaction. The equation is transformed to the ‘resonant’ nonlinear
Schrödinger equation, as originally introduced to describe black holes in a
Madelung fluid and recently derived in the context of uniaxial wave propagation
in a cold collisionless plasma. A Hirota bilinear representation is obtained and
soliton solutions are thereby derived. The one-soliton solution interpretation
in terms of a black hole in two-dimensional spacetime is given. For the two-
soliton solution, resonant interactions of several kinds are found. The addition
of a quantum potential term is considered and the reduction is obtained to the
resonant NLS equation.

PACS numbers: 02.30.Ik, 02.30.Jr, 04.60.Kz, 05.45.−a, 42.81.Dp, 52.35.Sb

(Some figures in this article are in colour only in the electronic version)

1. Malomed–Stenflo NLS and RNLS connections

In a search for generalizations of the nonlinear Schrödinger equation which admit Hamiltonian
form, Malomed and Stenflo [1] derived the equation

iut + uxx + 2p|u|2u =
(

c̄
u2

x

u2
+ c

ū2
x

ū2
− 2c

ūxx

ū
− 2c

ūxux

ūu

)
u (1)

with the Hamiltonian density

H = |ux |2 − p|u|4 + c
u

ū
ū2

x + c̄
ū

u
u2

x (2)
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and the complex parameter c = c1 + ic2. As was shown by Natterman [2], under the restriction
of this parameter to the open disc |c| < 1

2 , equation (1) can be transformed into the NLS
equation and, accordingly, is integrable (see also Auberson and Sabatier [3] for real c). Here,
it will be shown that (1) is integrable for all values of the complex parameter c, and that, in a
specific range of the parameters, it admits resonance solitons.

If we set u = eR+iS then (1) yields

−St − (1 − 2c1)S
2
x + 2p e2R + 2c2Sxx + (1 + 2c1)

(
Rxx + R2

x

) = 0, (3)

Rt + (1 − 2c1)(Sxx + 2RxSx) + 2c2Rxx + 4c2R
2
x = 0 (4)

and it is readily seen that the linear transformation

S = Ŝ +
2c2

2c1 − 1
R̂, R = R̂, t̂ = (2c1 − 1)t (5)

transforms this system into the Madelung form

Ŝ t̂ − Ŝ2
x − 2p

2c1 − 1
e2R̂ − 4|c|2 − 1

(2c1 − 1)2

(
R̂xx + R̂2

x

) = 0 (6)

−R̂t̂ + (Ŝxx + 2R̂xŜx) = 0. (7)

Introduction of the new wavefunction

ψ = eR̂−iŜ (8)

produces the resonant NLS (RNLS) equation of Pashaev and Lee [4],

iψt̂ + ψxx − 2p

2c1 − 1
|ψ |2ψ = s

|ψ |xx

|ψ | ψ, (9)

where

s = 1 +
4|c|2 − 1

(2c1 − 1)2
. (10)

2. RNLS reductions

2.1. Undercritical case

If s < 1 so that |c| < 1
2 , then on rescaling time and the phase of the wavefunction according

to

t̂ = t̃√
1 − s

, Ŝ(x, t) = √
1 − sS̃(x, t̃), R̂(x, t) = R̃(x, t̃), (11)

where
√

1 − s = 1 − 4|c|2
(1 − 2c1)2

, (12)

then we retrieve the usual NLS equation

iψ̃t̃ + ψ̃xx + 2p
1 − 2c1

1 − 4|c|2 |ψ̃ |2ψ̃ = 0 (13)

in ψ̃ = eR̃−iS̃ . This, as in [2], establishes that when |c| < 1
2 the Malomed–Steflo equation (1)

may be transformed into the standard NLS equation.
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2.2. Critical case

If s = 1 so that |c| = 1
2 , then on the circle c2

1 + c2
2 = 1

4 equation (9) becomes dispersionless
and the resultant NLS equation can be linearized.

2.3. Special case

In the special case when c1 = 1
2 and c2 is an arbitrary real number, the system (3)–(4) reduces

[2] to the heat equation

−St + 2c2Sxx + 2pρ + 2
(
√

ρ)xx√
ρ

= 0 (14)

with density and quantum potential-type sources, together with the heat equation

ρt + 2c2ρxx = 0. (15)

for the density ρ = |u|2 = e2R.

2.4. Overcritical (resonant) case

If s > 1, so that |c| > 1
2 then except on the vertical line c = 1

2 + ic2, the RNLS equation
cannot be reduced to the NLS form. However, the rescaling

t̂ = t̃√
s − 1

, Ŝ(x, t) = √
s − 1S̃(x, t̃), R̂(x, t) = R̃(x, t̃), (16)

where

√
s − 1 =

√
4|c|2 − 1

|2c1 − 1| (17)

and the introduction of the two real functions E+, E− according to

E+ = eR̃+S̃ , E− = −eR̃−S̃ (18)

produces the coupled system

−E+
t̃ + E+

xx + 2p
2c1 − 1

4|c|2 − 1
E+E−E+ = 0, (19)

E−
t̃

+ E−
xx + 2p

2c1 − 1

4|c|2 − 1
E+E−E− = 0. (20)

2.5. Bilinear representation of the resonant case

The system (19) and (20) can be bilinearized in terms of three real functions G+,G− and F
where

E+ =
√

4|c|2 − 1

|p(2c1 − 1)|
G+

F
, E− =

√
4|c|2 − 1

|p(2c1 − 1)|
G−

F
(21)

satisfy the system(
+Dt̃ − D2

x

)
(G+ · F) = 0, (22)(−Dt̃ − D2

x

)
(G− · F) = 0, (23)
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Figure 1. The complex c plane. The region inside the circle |c| < 1
2 corresponds to the NLS. The

circle |c| = 1
2 is associated with the dispersionless limit of the NLS. Points along the vertical line

x = 1
2 correspond to linear diffusion reductions. The region |c| > 1

2 corresponds to the resonant
case. The right half-plane with c1 > 1

2 admits nonsingular solutions for the coupling constant
p < 0, and for the left half-plane c1 < 1

2 for p > 0.

D2
x(F · F) = 2κ2G+G−, (24)

where the latter equation shows that

−|u|2 = E+E− = κ2 4|c|2 − 1

|p(2c1 − 1)| (ln F)xx, (25)

where κ2 = sign p((2c1 − 1)) = ±1.
In the focusing case p > 0, for c1 > 1

2 we have κ2 = 1 while for c1 < 1
2 we have κ2 = −1

(see figure 1).
In the defocusing case p < 0, for c1 > 1

2 we have κ2 = −1 while for c1 < 1
2 we have

κ2 = +1 (see figure 1).
It is noted that the solution u of the Malomed–Stenflo equation (1) may be written explicitly

in a bilinear form as

u(x, t) =
⎡
⎣ 4|c|2 − 1

|p(2c1 − 1)|
1

F 2

(
G+

−G−

)i
√

4|c|2−1
2|2c1−1|

⎤
⎦

2c−1
2(2c1−1)

, (26)

where G±(x, t̃) = G±(x,
√

4|c|2 − 1t), F (x, t̃) = F(x,
√

4|c|2 − 1t), c = c1 + ic2.
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2.6. Single-soliton solution

For the one-soliton solution we have

G± = ± eη±
1 , F = 1 − κ2 eη+

1 +η−
1 +φ11 , eφ11 = 1(

k+
1 + k−

1

)2 , (27)

where η±
1 = k±

1 x ± (
k±

1

)2
t̃ + η

±(0)
1 , and k±

1 , η
±(0)
1 are arbitrary real constants. This solution is

regular only if κ2 < 0, which corresponds to the cases p > 0, c1 < 1
2 or p < 0, c1 > 1

2 , when
κ2 = −1 (see figure 1). Here, we focus on this case. From the preceding we have

eR̂ =
√

4|c|2 − 1

|p(2c1 − 1)|

∣∣k+
1 + k−

1

∣∣
2 cosh η+

1 +η−
1 +φ11

2

, Ŝ =
√

4|c|2 − 1

|2c1 − 1|
η+

1 − η−
1

2
. (28)

Denoting v ≡ (
k−

1 − k+
1

)√
4|c|2 − 1, k ≡ (

k−
1 + k+

1

)/
2 and using t̃ = ±

√
4|c|2 − 1t we obtain

a single-soliton solution of the model (1) in the form

u(x, t) =
√

4|c|2 − 1

|p(2c1 − 1)|
|k| ei�(x,t)

cosh k(x − vt − x0)
, (29)

where

� = 1

|2c1 − 1|
[
−vx

2
+

[
(4|c|2 − 1)k2 +

v2

4

]
t

]
− 2c2

2c1 − 1
ln[cosh k(x − vt − x0)] + φ0.

(30)

2.7. Hyperbolic metrics and black hole interpretation

Substitution of the Madelung form u = eR+iS into the Hamiltonian density (2) yields

H = [
(1 + 2c1)R

2
x + (1 − 2c1)S

2
x + 4c2RxSx

]
e2R − p e4R. (31)

The dispersion is positive definite if |c| < 1
2 and indefinite when |c| > 1

2 . In the present
resonant case, the dispersion is of indefinite sign. Thus in terms of (5)

H =
[(

4|c|2 − 1

2c1 − 1

)
R̂2

x + (1 − 2c1)Ŝ
2
x

]
e2R̂ − p e4R̂ (32)

whence, when |c| > 1
2 the dispersion is indefinite and it changes sign at points in the spacetime

where

R̂x = ± 1 − 2c1√
4|c|2 − 1

Ŝx . (33)

For the one-soliton solution (29) this gives

tanh k(x − vt − x0) = ± v

2k
, (34)

a solution of which exists if |v| < 2|k|. As in [4, 5], we can construct a two-dimensional
pseudo-Riemannian metric for (19), (20) and the RNLS, namely

dl2 = [
(4|c|2 − 1)R̂2

x − (2c1 − 1)2Ŝ2
x

]
e2R̂ dt2 − 2Ŝx |2c1 − 1| e2R̂ dx dt − e2R̂ dx2 (35)

so that evolution according to equation (1) implies the two-dimensional spacetime with the
constant scalar curvature

R = 8p
2c1 − 1

4|c|2 − 1
. (36)
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Figure 2. Fusion and fission of two solitons (a) fusion of two solitons (b) fission of two solitons.

With our choice of parameters, namely c1 > 1
2 , p < 0 or c1 < 1

2 , p > 0, R is negative-valued.
The time component of the metric is the dispersion term ε0 for the energy

g00 = [
(4|c|2 − 1)R̂2

x − (2c1 − 1)2Ŝ2
x

]
e2R̂ = (2c1 − 1)ε0. (37)

Points where g00 vanishes correspond to the event horizon of a black hole. For the one-soliton
solution this corresponds to condition (34). Solitons of the equation (1) moving with the
velocity |v| < 2|k| correspond to black holes with event horizon dependent on the velocity of
the soliton.

2.8. Two-soliton solution

The Hirota bilinear representation (22)–(24) admits two-soliton solutions with

G± = ±(
eη±

1 + eη±
2 + α±

1 eη+
1 +η−

1 +η±
2 + α±

2 eη+
2 +η−

2 +η±
1
)
, (38)

F = 1 +
eη+

1 +η−
1(

k+−
11

)2 +
eη+

1 +η−
2(

k+−
12

)2 +
eη+

2 +η−
1(

k+−
21

)2 +
eη+

2 +η−
2(

k+−
22

)2 + β eη+
1 +η−

1 +η+
2 +η−

2 , (39)

where η±
i = k±

i x ± (
k±
i

)2
t̃ + η

±(0)
i , kab

ij = ka
i + kb

j , (i, j = 1, 2), (a, b = +−),

α±
1 =

(
k±

1 − k±
2

)2(
k+−

11 k±∓
21

)2 , α±
2 =

(
k±

1 − k±
2

)2(
k+−

22 k±∓
12

)2 , β =
(
k+

1 − k+
2

)2(
k−

1 − k−
2

)2(
k+−

11 k+−
12 k+−

21 k+−
22

)2 . (40)

2.9. Resonance interaction of solitons

In figure 2, fusion and fission of two solitons is shown for the parameter values k+
1 = 0.1,

k−
1 = 1, k+

2 = 1, k−
2 = 0 and large phase shift. The horizontal and vertical axes represent

space x and time t coordinates, respectively.
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Figure 3. Two-soliton resonant state.
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Figure 4. Four-soliton resonance scattering.

In figure 3, the creation of soliton resonance with a finite lifetime is shown. The parameters
in this case are the same as above, except for the phase shift d = 15.

In figure 4, four virtual soliton resonance scattering is shown for k+
1 = 2, k−

1 = 1, k+
2 = 1,

k−
2 = 2 and d = 16.

3. Nontrivial boundary conditions

In the application of the RNLS model to the propagation of solitonic magnetoacoustic waves
in [6] the required asymptotic behavior is |ψ |2 = ρ → 1 at infinity. In this case, we can derive
a one-soliton solution of (1) with

|u|2(x, t) = 1 +
v2 − 4p(1 − 2c1)

4p(1 − 2c1)
sech2

[√
v2 − 4p(1 − 2c1)

2
√

4|c|2 − 1
(x + vt + x0)

]
(41)
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and the phase

S(x, t) = S0 + 2pt +
c2

2c1 − 1
ln |u|2(x, t) (42)

+

√
4|c|2 − 1

2|2c1 − 1| ln
v +

√
v2 − 4p(1 − 2c1) tanh

[√
v2−4p(1−2c1)

2
√

4|c|2−1
(x + vt + x0)

]

v −
√

v2 − 4p(1 − 2c1) tanh

[√
v2−4p(1−2c1)

2
√

4|c|2−1
(x + vt + x0)

] . (43)

It is seen that the velocity of this soliton is bounded below with |v| > 2|p(1 − 2c1)|. This
contrasts with the case of the defocusing NLS equation where the dark soliton velocity
is bounded above. Moreover if the soliton of the defocusing NLS is a hole-like (bubble)
excitation with ρ = |u|2 < 1, for the Malomed–Stenflo equation this has ρ = |u|2 > 1. It is
noted that the two-soliton solution can be constructed alternatively via a Backlund–Darboux
transformation [6]. Solutions of the RNLS equation with nontrivial boundary conditions have
been investigated by Lee and Pashaev in [7]. These results may be carried over ‘mutatis
mutandis’ to the Malomed–Stenflo equation (1).

4. Conclusion

It has been established that the generalized nonlinear Schrödinger equation (1) introduced in
[1], for a specific range of parameters, admits resonant soliton interaction. Indeed, a natural
integrable extension of this equation is suggested, namely

iut + uxx + 2p|u|2u =
(

c̄
u2

x

u2
+ c

ū2
x

ū2
− 2c

ūxx

ū
− 2c

ūxux

ūu

)
u + 4ν

|u|xx

|u| u (44)

corresponding to the addition of a ‘quantum potential’ term with strength ν. This extension
can be motivated in an information theory context to reflect uncertainty conditions in the
measurement process and described by the Fisher measure [8]. The generalized NLS equation
(44) is Hamiltonian with

H = |ux |2 − p|u|4 + c
u

ū
ū2

x + c̄
ū

u
u2

x − 4ν(|u|x)2. (45)

Following the same procedure as that for (1), reduction may be made to the RNLS form (9)
but now with the parameter

s = 1 +
4|c|2 − 1 − 4ν(2c1 − 1)

(2c1 − 1)2
. (46)

The reductions of the extended model equation (44) then depend on both the complex parameter
c = c1 + ic2 and the real quantum potential strength ν. In geometrical terms, the circle |c| = 1

2
in figure 1 is modified by the presence of the additional parameter ν to become

(c1 − ν)2 + c2
2 = (

ν − 1
2

)2
. (47)

The region inside this circle corresponds to the NLS reduction, while the outside corresponds
to the resonant NLS case. It is noted that when ν = 1

2 , the disc shrinks to a point and no
reduction to the classical NLS is possible. In this case

s = 1 +
(2c1 − 1)2 + 4c2

2

(2c1 − 1)2
(48)

whence s > 1 and the model equation (44) is necessarily of resonant type.

8
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